Journal of Pharmaceutical and Biomedical Analysis 233 (2023) 115473
11
Appendix A. Supporting information
Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.jpba.2023.115473.
References
[1] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray,
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209–249,
https://doi.org/10.3322/CAAC.21660.
[2] M. Horstmann, R. Witthuhn, M. Falk, A. Stenzl, Gender-specic differences in
bladder cancer: a retrospective analysis, Gend. Med 5 (2008) 385–394, https://doi.
org/10.1016/J.GENM.2008.11.002.
[3] A.M. Grimaldi, C. Lapucci, M. Salvatore, M. Incoronato, M. Ferrari, Urinary
miRNAs as a diagnostic tool for bladder cancer: a systematic review, Biomedicines
10 (2022) 2766, https://doi.org/10.3390/BIOMEDICINES10112766/S1.
[4] K. Steinestel, C. Bulai, P. Geavlete, C.-V. Ene, I. Bulai, R.-I. Popescu, C. Mares,
C. Daniela Ene, A.-M. Punga, B. Geavlete, Detection of urinary molecular marker
test in urothelial cell carcinoma: a review of methods and accuracy, 2022, Vol. 12,
Page 2696, Diagnostics 12 (2022) 2696, https://doi.org/10.3390/
DIAGNOSTICS12112696.
[5] C.Z. Zhu, H.N. Ting, K.H. Ng, T.A. Ong, A review on the accuracy of bladder cancer
detection methods, J. Cancer 10 (2019) 4038, https://doi.org/10.7150/
JCA.28989.
[6] N. Goossens, S. Nakagawa, X. Sun, Y. Hoshida, Cancer biomarker discovery and
validation, Transl. Cancer Res 4 (2015) 256, https://doi.org/10.3978/J.
ISSN.2218-676X.2015.06.04.
[7] Y. Soorojebally, Y. Neuzillet, M. Roumigui´
e, P.J. Lamy, Y. Allory, F. Descotes,
S. Ferlicot, D. Kassab-Chahmi, S. Oudard, X. R´
ebillard, C. Roy, T. Lebret,
M. Rouprˆ
et, F. Audenet, Urinary biomarkers for bladder cancer diagnosis and
NMIBC follow-up: a systematic review, World J. Urol. 41 (2023) 345–359, https://
doi.org/10.1007/S00345-022-04253-3/TABLES/3.
[8] H.K. Shefer, I. Masarwe, J. Bejar, L.H. Naamnih, K. Gueta-Milshtein, A. Shalata,
Y. Hadid, O. Nativ, O. Nativ, Performance of CellDetect for detection of bladder
cancer: comparison with urine cytology and UroVysion, Urol. Oncol.: Semin. Orig.
Investig. (2023), https://doi.org/10.1016/J.UROLONC.2022.12.012.
[9] C.H. Johnson, J. Ivanisevic, G. Siuzdak, Metabolomics: beyond biomarkers and
towards mechanisms, Nat. Rev. Mol. Cell Biol. 17 (2016) 451–459, https://doi.org/
10.1038/NRM.2016.25.
[10] P. Ko´
sli´
nski, R. Bujak, E. Daghir, M.J. Markuszewski, Metabolic proling of
pteridines for determination of potential biomarkers in cancer diseases,
Electrophoresis 32 (2011) 2044–2054, https://doi.org/10.1002/ELPS.201000664.
[11] J. Pinto, F. Amaro, A.R. Lima, C. Carvalho-Maia, C. Jer´
onimo, R. Henrique, M.D.
L. Bastos, M. Carvalho, P. Guedes, Urinary volatilomics unveils a candidate
biomarker panel for noninvasive detection of clear cell renal cell carcinoma,
J. Proteome Res 20 (2021) 3068–3077, https://doi.org/10.1021/ACS.
JPROTEOME.0C00936/ASSET/IMAGES/LARGE/PR0C00936_0004.JPEG.
[12] N.A. Di Meo, D. Loizzo, S.D. Pandolfo, R. Autorino, M. Ferro, C. Porta, A. Stella,
C. Bizzoca, L. Vincenti, F. Crocetto, O.S. Tataru, M. Rutigliano, M. Battaglia,
P. Ditonno, G. Lucarelli, Metabolomic approaches for detection and identication
of biomarkers and altered pathways in bladder cancer, Int. J. Mol. Sci. 23 (2022)
4173, https://doi.org/10.3390/IJMS23084173/S1.
[13] G. Petrella, G. Ciufolini, R. Vago, D.O. Cicero, Urinary metabolic markers of
bladder cancer: a reection of the tumor or the response of the body? Metabolites
11 (2021) https://doi.org/10.3390/metabo11110756.
[14] M. Manzi, G. Riquelme, N. Zabalegui, M.E. Monge, Improving diagnosis of
genitourinary cancers: biomarker discovery strategies through mass spectrometry-
based metabolomics, J. Pharm. Biomed. Anal. 178 (2020), https://doi.org/
10.1016/j.jpba.2019.112905.
[15] R. Batista, N. Vinagre, S. Meireles, J. Vinagre, H. Prazeres, R. Le˜
ao, V. M´
aximo,
P. Soares, Biomarkers for bladder cancer diagnosis and surveillance: a
comprehensive review, Diagnostics 10 (2020) 39, https://doi.org/10.3390/
DIAGNOSTICS10010039.
[16] J. Li, B. Cheng, H. Xie, C. Zhan, S. Li, P. Bai, Bladder cancer biomarker screening
based on non-targeted urine metabolomics, 2021 54:1, Int. Urol. Nephrol. 54
(2021) 23–29, https://doi.org/10.1007/S11255-021-03080-6.
[17] M. Qu, S. Ma, Y. Huang, H. Yuan, S. Zhang, G. Ouyang, Y. Zhao, LC-MS/MS-based
non-isotopically paired labeling (NIPL) strategy for the qualication and
quantication of monosaccharides, Talanta 231 (2021), 122336, https://doi.org/
10.1016/j.talanta.2021.122336.
[18] J. Oto, ´
A. Fern´
andez-Pardo, M. Roca, E. Plana, F. Cana, R. Herranz, J. P´
erez-
Ardavín, C.D. Vera-Donoso, M. Martínez-Sarmiento, P. Medina, LC–MS
metabolomics of urine reveals distinct proles for non-muscle-invasive and muscle-
invasive bladder cancer, World J. Urol. 40 (2022) 2387–2398, https://doi.org/
10.1007/S00345-022-04136-7/FIGURES/4.
[19] J. Pinto, ˆ
A. Carapito, F. Amaro, A.R. Lima, C. Carvalho-Maia, M.C. Martins,
C. Jer´
onimo, R. Henrique, M. de, L. Bastos, P.G. de Pinho, Discovery of volatile
biomarkers for bladder cancer detection and staging through urine metabolomics,
Metabolites 11 (2021) 199, https://doi.org/10.3390/metabo11040199.
[20] S. Srivastava, R. Roy, S. Singh, P. Kumar, D. Dalela, S.N. Sankhwar, A. Goel, A.
A. Sonkar, Taurine - A possible ngerprint biomarker in non-muscle invasive
bladder cancer: a pilot study by
1
H NMR spectroscopy, Cancer Biomark. 6 (2009)
11–20, https://doi.org/10.3233/CBM-2009-0115.
[21] A. Loras, C. Su´
arez-Cabrera, M.C. Martínez-Bisbal, G. Quint´
as, J.M. Paramio,
R. Martínez-M´
a˜
nez, S. Gil, J.L. Ruiz-Cerd´
a, Integrative metabolomic and
transcriptomic analysis for the study of bladder cancer, Cancers 11 (2019) 1–36,
https://doi.org/10.3390/cancers11050686.
[22] I.V. Plyushchenko, E.S. Fedorova, N.V. Potoldykova, K.A. Polyakovskiy, A.
I. Glukhov, I.A. Rodin, Omics untargeted key script: r-based software toolbox for
untargeted metabolomics with bladder cancer biomarkers discovery case study,
J. Proteome Res (2021), https://doi.org/10.1021/acs.jproteome.1c00392.
[23] X. Liu, X. Cheng, X. Liu, L. He, W. Zhang, Y. Wang, W. Sun, Z. Ji, Investigation of
the urinary metabolic variations and the application in bladder cancer biomarker
discovery, Int J. Cancer 143 (2018) 408–418, https://doi.org/10.1002/IJC.31323.
[24] C. Shen, Z. Sun, D. Chen, X. Su, J. Jiang, G. Li, B. Lin, J. Yan, Developing urinary
metabolomic signatures as early bladder cancer diagnostic markers, OMICS 19
(2015) 1–11, https://doi.org/10.1089/omi.2014.0116.
[25] C.H. Shao, C.L. Chen, J.Y. Lin, C.J. Chen, S.H. Fu, Y.T. Chen, Y.S. Chang, J.S. Yu, K.
H. Tsui, C.G. Juo, K.P. Wu, Metabolite marker discovery for the detection of
bladder cancer by comparative metabolomics, Oncotarget 8 (2017) 38802–38810,
https://doi.org/10.18632/oncotarget.16393.
[26] X. Cheng, X. Liu, X. Liu, Z. Guo, H. Sun, M. Zhang, Z. Ji, W. Sun, Metabolomics of
Non-muscle Invasive Bladder Cancer: biomarkers for early detection of bladder
cancer, Front Oncol. 8 (2018) 1–11, https://doi.org/10.3389/fonc.2018.00494.
[27] J. Nizioł, K. Ossoli´
nski, A. Płaza-Altamer, A. Kołodziej, A. Ossoli´
nska, T. Ossoli´
nski,
T. Ruman, Untargeted ultra-high-resolution mass spectrometry metabolomic
proling of blood serum in bladder cancer, 2022 12:1. 12, Sci. Rep. (2022) 1–13,
https://doi.org/10.1038/s41598-022-19576-9.
[28] M. Baker, Metabolomics: from small molecules to big ideas, 2011 8:2. 8, Nat.
Methods (2011) 117–121, https://doi.org/10.1038/nmeth0211-117.
[29] K. Segers, S. Declerck, D. Mangelings, Y. Vander Heyden, A. Van Eeckhaut,
Analytical techniques for metabolomic studies: a review, Bioanalysis 11 (2019)
2297–2318, https://doi.org/10.4155/bio-2019-0014.
[30] A. Płaza, A. Kołodziej, J. Nizioł, T. Ruman, Laser ablation synthesis in solution and
nebulization of silver-109 nanoparticles for mass spectrometry and mass
spectrometry imaging, ACS Meas. Sci. Au 2 (2021) 14–22, https://doi.org/
10.1021/ACSMEASURESCIAU.1C00020.
[31] J. Nizioł, K. Ossoli´
nski, B.P. Tripet, V. Copi´
e, A. Arendowski, T. Ruman, Nuclear
magnetic resonance and surface-assisted laser desorption/ionization mass
spectrometry-based metabolome proling of urine samples from kidney cancer
patients, J. Pharm. Biomed. Anal. 193 (2021), 113752, https://doi.org/10.1016/j.
jpba.2020.113752.
[32] K. Ossoli´
nski, T. Ruman, V. Copi´
e, B.P. Tripet, L.B. Nogueira, K.O.P.C. Nogueira,
A. Kołodziej, A. Płaza-Altamer, A. Ossoli´
nska, T. Ossoli´
nski, J. Nizioł, Metabolomic
and elemental proling of blood serum in bladder cancer, J. Pharm. Anal. (2022),
https://doi.org/10.1016/J.JPHA.2022.08.004.
[33] J. Nizioł, K. Ossoli´
nski, B.P. Tripet, V. Copi´
e, A. Arendowski, T. Ruman, Nuclear
magnetic resonance and surface-assisted laser desorption/ionization mass
spectrometry-based serum metabolomics of kidney cancer, Anal. Bioanal. Chem.
(2020) 1–15, https://doi.org/10.1007/s00216-020-02807-1.
[34] Z. Pang, J. Chong, G. Zhou, D.A. De Lima Morais, L. Chang, M. Barrette,
C. Gauthier, P.´
E. Jacques, S. Li, J. Xia, MetaboAnalyst 5.0: narrowing the gap
between raw spectra and functional insights, Nucleic Acids Res 49 (2021)
W388–W396, https://doi.org/10.1093/NAR/GKAB382.
[35] J. Nizioł, V. Copi´
e, B.P. Tripet, L.B. Nogueira, K.O.P.C. Nogueira, K. Ossoli´
nski,
A. Arendowski, T. Ruman, Metabolomic and elemental proling of human tissue in
kidney cancer, Metabolomics 17 (2021) 30, https://doi.org/10.1007/S11306-021-
01779-2.
[36] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama, P. Bork, S. Goto,
M. Kanehisa, KEGG Atlas mapping for global analysis of metabolic pathways,
Nucleic Acids Res 36 (2008) W423–W426, https://doi.org/10.1093/NAR/
GKN282.
[37] D.S. Wishart, D. Tzur, C. Knox, R. Eisner, A.C. Guo, N. Young, D. Cheng, K. Jewell,
D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.-A. Coutouly, I. Forsythe,
P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard, G. Amegbey, D. Block,
DavidD. Hau, J. Wagner, J. Miniaci, M. Clements, M. Gebremedhin, N. Guo,
Y. Zhang, G.E. Duggan, G.D. MacInnis, A.M. Weljie, R. Dowlatabadi, F. Bamforth,
D. Clive, R. Greiner, L. Li, T. Marrie, B.D. Sykes, H.J. Vogel, L. Querengesser,
HMDB: the human metabolome database, Nucleic Acids Res 35 (2007)
D521–D526, https://doi.org/10.1093/nar/gkl923.
[38] R. Caspi, R. Billington, C.A. Fulcher, I.M. Keseler, A. Kothari, M. Krummenacker,
M. Latendresse, P.E. Midford, Q. Ong, W.K. Ong, S. Paley, P. Subhraveti, P.D. Karp,
The MetaCyc database of metabolic pathways and enzymes, Nucleic Acids Res 46
(2018) D633–D639, https://doi.org/10.1093/nar/gkx935.
[39] M. Sud, E. Fahy, D. Cotter, A. Brown, E.A. Dennis, C.K. Glass, A.H. Merrill, R.
C. Murphy, C.R.H. Raetz, D.W. Russell, S. Subramaniam, LMSD: LIPID MAPS
structure database, Nucleic Acids Res 35 (2007), https://doi.org/10.1093/nar/
gkl838.
[40] H. Ashihara, I.A. Ludwig, R. Katahira, T. Yokota, T. Fujimura, A. Crozier,
H. Ashihara, I.A. Ludwig, ´
A.A. Crozier, R. Katahira, T. Yokota, T. Fujimura,
Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis,
taxonomic considerations, and their roles in planta and in human health, 2014 14:
5, Phytochem. Rev. 14 (2014) 765–798, https://doi.org/10.1007/S11101-014-
9375-Z.
[41] N. Hirakawa, R. Okauchi, Y. Miura, K. Yagasaki, Anti-invasive activity of niacin
and trigonelline against cancer cells, OUP 69 (2014) 653–658, https://doi.org/
10.1271/BBB.69.653.
[42] A. Arlt, S. Sebens, S. Krebs, C. Geismann, M. Grossmann, M.L. Kruse, S. Schreiber,
H. Sch¨
afer, Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline
K. Ossoli´
nski et al.