
Journal of Pharmaceutical and Biomedical Analysis 240 (2024) 115966
11
Declaration of generative AI and AI-assisted technologies in the
writing process
During the preparation of this work, the author(s) used ChatGPT3
(OpenAI) in order to improve language and readability. After using this
tool/service, the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the content of the publication.
Declaration of Competing Interest
The authors declare that they have no known competing nancial
interests or personal relationships that could have appeared to inuence
the work reported in this paper.
Appendix A. Supporting information
Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.jpba.2024.115966.
References
[1] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray,
Global cancer statistics 2020: globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209–249,
https://doi.org/10.3322/CAAC.21660.
[2] M.C.S. Wong, F.D.H. Fung, C. Leung, W.W.L. Cheung, W.B. Goggins, C.F. Ng, The
global epidemiology of bladder cancer: a joinpoint regression analysis of its
incidence and mortality trends and projection, 8, Sci. Rep. 2018 8 (1) (2018) 1–12,
https://doi.org/10.1038/s41598-018-19199-z.
[3] J. Mushtaq, R. Thurairaja, R. Nair, Bladder cancer, Surg. (Oxf. ) 37 (2019)
529–537, https://doi.org/10.1016/J.MPSUR.2019.07.003.
[4] D. Sahu, Y. Lotan, B. Wittmann, B. Neri, D.E. Hansel, Metabolomics analysis reveals
distinct proles of nonmuscle-invasive and muscle-invasive bladder cancer, Cancer
Med 6 (2017) 2106–2120, https://doi.org/10.1002/CAM4.1109.
[5] S. Tabaei, M.R. Haghshenas, T.J. Webster, A. Ghaderi, Proteomics strategies for
urothelial bladder cancer diagnosis, prognosis and treatment: Trends for tumor
biomarker sources, Anal. Biochem 666 (2023) 115074, https://doi.org/10.1016/J.
AB.2023.115074.
[6] X.W. Zhang, Q.H. Li, Z. Di Xu, J.J. Dou, Mass spectrometry-based metabolomics in
health and medical science: a systematic review, RSC Adv. 10 (2020) 3092–3104,
https://doi.org/10.1039/C9RA08985C.
[7] N.A. Di Meo, D. Loizzo, S.D. Pandolfo, R. Autorino, M. Ferro, C. Porta, A. Stella,
C. Bizzoca, L. Vincenti, F. Crocetto, O.S. Tataru, M. Rutigliano, M. Battaglia,
P. Ditonno, G. Lucarelli, Metabolomic approaches for detection and identication
of biomarkers and altered pathways in bladder cancer, Int J. Mol. Sci. 23 (2022)
4173, https://doi.org/10.3390/IJMS23084173/S1.
[8] H.A. García-Perdomo, A.M. D´
avila-Raigoza, F. Korkes, Metabolomics for the
diagnosis of bladder cancer: a systematic review, Asian J. Urol. (2023), https://doi.
org/10.1016/J.AJUR.2022.11.005.
[9] P.K. Cheung, M.H. Ma, H.F. Tse, K.F. Yeung, H.F. Tsang, M.K.M. Chu, C.M. Kan, W.
C.S. Cho, L.B.W. Ng, L.W.C. Chan, S.C.C. Wong, The applications of metabolomics
in the molecular diagnostics of cancer, Expert Rev. Mol. Diagn. 19 (2019) 785–793,
https://doi.org/10.1080/14737159.2019.1656530.
[10] N.R. Anwardeen, I. Diboun, Y. Mokrab, A.A. Althani, M.A. Elrayess, Statistical
methods and resources for biomarker discovery using metabolomics, 24, BMC
Bioinforma. 2023 24 (1) (2023) 1–18, https://doi.org/10.1186/S12859-023-
05383-0.
[11] N. Putluri, A. Shojaie, V.T. Vasu, S.K. Vareed, S. Nalluri, V. Putluri, G.S. Thangjam,
K. Panzitt, C.T. Tallman, C. Butler, T.R. Sana, S.M. Fischer, G. Sica, D.J. Brat,
H. Shi, G.S. Palapattu, Y. Lotan, A.Z. Weizer, M.K. Terris, S.F. Shariat,
G. Michailidis, A. Sreekumar, Metabolomic proling reveals potential markers and
bioprocesses altered in bladder cancer progression, Cancer Res 71 (2011)
7376–7386, https://doi.org/10.1158/0008-5472.CAN-11-1154.
[12] P. Tripathi, B.S. Somashekar, M. Ponnusamy, A. Gursky, S. Dailey, P. Kunju, C.
T. Lee, A.M. Chinnaiyan, T.M. Rajendiran, A. Ramamoorthy, HR-MAS NMR tissue
metabolomic signatures cross-validated by mass spectrometry distinguish bladder
cancer from benign disease, J. Proteome Res 12 (2013) 3519–3528, https://doi.
org/10.1021/PR4004135/SUPPL_FILE/PR4004135_SI_001.PDF.
[13] D.W.B. Piyarathna, T.M. Rajendiran, V. Putluri, V. Vantaku, T. Soni, F.C. von
Rundstedt, S.R. Donepudi, F. Jin, S. Maity, C.R. Ambati, J. Dong, D. G¨
odde, S. Roth,
S. St¨
orkel, S. Degener, G. Michailidis, S.P. Lerner, S. Pennathur, Y. Lotan, C. Coarfa,
A. Sreekumar, N. Putluri, Distinct lipidomic landscapes associated with clinical
stages of urothelial cancer of the bladder, Eur. Urol. Focus 4 (2018) 907–915,
https://doi.org/10.1016/J.EUF.2017.04.005.
[14] K. Ossoli´
nski, T. Ruman, T. Ossoli´
nski, A. Ossoli´
nska, A. Arendowski, A. Kołodziej,
A. Płaza-Altamer, J. Nizioł, Monoisotopic silver nanoparticles-based mass
spectrometry imaging of human bladder cancer tissue: Biomarker discovery, Adv.
Med Sci. 68 (2023) 38–45, https://doi.org/10.1016/J.ADVMS.2022.12.002.
[15] D.W.B. Piyarathna, T.M. Rajendiran, V. Putluri, V. Vantaku, T. Soni, F.C. von
Rundstedt, S.R. Donepudi, F. Jin, S. Maity, C.R. Ambati, J. Dong, D. G¨
odde, S. Roth,
S. St¨
orkel, S. Degener, G. Michailidis, S.P. Lerner, S. Pennathur, Y. Lotan, C. Coarfa,
A. Sreekumar, N. Putluri, Distinct lipidomic landscapes associated with clinical
stages of urothelial cancer of the bladder, Eur. Urol. Focus 4 (2018) 907–915,
https://doi.org/10.1016/J.EUF.2017.04.005.
[16] R.R. Bhanvadia, Y. Lotan, Progress in the development of tissue-based biomarkers
for urothelial cancer, Expert Rev. Anticancer Ther. 22 (2022) 605–619, https://doi.
org/10.1080/14737140.2022.2070154.
[17] H.L. Stewart, D.J.S. Birch, Fluorescence guided surgery, Methods Appl. Fluor. 9
(2021) 042002, https://doi.org/10.1088/2050-6120/AC1DBB.
[18] J. Nizioł, V. Copi´
e, B.P. Tripet, L.B. Nogueira, K.O.P.C. Nogueira, K. Ossoli´
nski,
A. Arendowski, T. Ruman, Metabolomic and elemental proling of human tissue in
kidney cancer, Metabolomics 17 (2021) 30, https://doi.org/10.1007/S11306-021-
01779-2.
[19] MassBank of North America (MoNA), (n.d.).
[20] Mass Spectrometry Data Center, NIST, (n.d.). 〈https://chemdata.nist.gov/〉
(Accessed 8 June 2022).
[21] Z. Pang, J. Chong, G. Zhou, D.A. De Lima Morais, L. Chang, M. Barrette,
C. Gauthier, P.´
E. Jacques, S. Li, J. Xia, MetaboAnalyst 5.0: narrowing the gap
between raw spectra and functional insights, Nucleic Acids Res 49 (2021)
W388–W396, https://doi.org/10.1093/NAR/GKAB382.
[22] J. Nizioł, K. Ossoli´
nski, A. Płaza-Altamer, A. Kołodziej, A. Ossoli´
nska, T. Ossoli´
nski,
A. Nieczaj, T. Ruman, Untargeted urinary metabolomics for bladder cancer
biomarker screening with ultrahigh-resolution mass spectrometry, 13, Sci. Rep.
2023 13 (1) (2023) 1–15, https://doi.org/10.1038/s41598-023-36874-y.
[23] K. Ossoli´
nski, T. Ruman, V. Copi´
e, B.P. Tripet, A. Kołodziej, A. Płaza-Altamer,
A. Ossoli´
nska, T. Ossoli´
nski, A. Nieczaj, J. Nizioł, Targeted and untargeted urinary
metabolic proling of bladder cancer, J. Pharm. Biomed. Anal. 233 (2023) 115473,
https://doi.org/10.1016/J.JPBA.2023.115473.
[24] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama, P. Bork, S. Goto,
M. Kanehisa, KEGG Atlas mapping for global analysis of metabolic pathways,
Nucleic Acids Res 36 (2008) W423–W426, https://doi.org/10.1093/NAR/
GKN282.
[25] J. Nizioł, K. Ossoli´
nski, A. Płaza-Altamer, A. Kołodziej, A. Ossoli´
nska, T. Ossoli´
nski,
T. Ruman, Untargeted ultra-high-resolution mass spectrometry metabolomic
proling of blood serum in bladder cancer, 12, Sci. Rep. 2022 12 (1) (2022) 1–13,
https://doi.org/10.1038/s41598-022-19576-9.
[26] D.W. Foster, The role of the carnitine system in human metabolism, Ann. N. Y
Acad. Sci. 1033 (2004) 1–16, https://doi.org/10.1196/ANNALS.1320.001.
[27] M.V. Liberti, J.W. Locasale, The Warburg effect: how does it benet cancer cells?
Trends Biochem Sci. 41 (2016) 211–218, https://doi.org/10.1016/J.
TIBS.2015.12.001.
[28] X. Jin, S.J. Yun, P. Jeong, I.Y. Kim, W.J. Kim, S. Park, Diagnosis of bladder cancer
and prediction of survival by urinary metabolomics, Oncotarget 5 (2014) 1635,
https://doi.org/10.18632/ONCOTARGET.1744.
[29] B.M. Wittmann, S.M. Stirdivant, M.W. Mitchell, J.E. Wulff, J.E. McDunn, Z. Li,
A. Dennis-Barrie, B.P. Neri, M.V. Milburn, Y. Lotan, R.L. Wolfert, Bladder cancer
biomarker discovery using global metabolomic proling of urine, PLoS One 9
(2014) e115870, https://doi.org/10.1371/JOURNAL.PONE.0115870.
[30] J. Nizioł, V. Bonifay, K. Ossoli´
nski, T. Ossoli´
nski, A. Ossoli´
nska, J. Sunner, I. Beech,
A. Arendowski, T. Ruman, Metabolomic study of human tissue and urine in clear
cell renal carcinoma by LC-HRMS and PLS-DA, Anal. Bioanal. Chem. 410 (2018)
3859–3869, https://doi.org/10.1007/s00216-018-1059-x.
[31] P. Tripathi, P. Kamarajan, B.S. Somashekar, N. MacKinnon, A.M. Chinnaiyan, Y.
L. Kapila, T.M. Rajendiran, A. Ramamoorthy, Delineating metabolic signatures of
head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic
target, Int J. Biochem Cell Biol. 44 (2012) 1852–1861, https://doi.org/10.1016/J.
BIOCEL.2012.06.025.
[32] B.S. Cummings, Phospholipase A2 as targets for anti-cancer drugs, Biochem Pharm.
74 (2007) 949–959, https://doi.org/10.1016/J.BCP.2007.04.021.
[33] S.A. Mir, P. Rajagopalan, A.P. Jain, A.A. Khan, K.K. Datta, S.V. Mohan, S.S. Lateef,
N. Sahasrabuddhe, B.L. Somani, T.S. Keshava Prasad, A. Chatterjee, K.V. Veerendra
Kumar, M. VijayaKumar, R.V. Kumar, S. Gundimeda, A. Pandey, H. Gowda,
LC–MS-based serum metabolomic analysis reveals dysregulation of
phosphatidylcholines in esophageal squamous cell carcinoma, J. Proteom. 127
(2015) 96–102, https://doi.org/10.1016/J.JPROT.2015.05.013.
[34] M.Y. Lee, A. Yeon, M. Shahid, E. Cho, V. Sairam, R. Figlin, K.H. Kim, J. Kim,
Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance,
Oncotarget 9 (2018) 13231, https://doi.org/10.18632/ONCOTARGET.24229.
[35] C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, S. Niesporek,
D. K¨
onsgen, M. Dietel, O. Fiehn, Mass spectrometry–based metabolic proling
reveals different metabolite patterns in invasive ovarian carcinomas and ovarian
borderline tumors, Cancer Res 66 (2006) 10795–10804, https://doi.org/10.1158/
0008-5472.CAN-06-0755.
[36] K.K. Pasikanti, K. Esuvaranathan, Y. Hong, P.C. Ho, R. Mahendran, L. Raman Nee
Mani, E. Chiong, E.C.Y. Chan, Urinary metabotyping of bladder cancer using two-
dimensional gas chromatography time-of-ight mass spectrometry, J. Proteome
Res 12 (2013) 3865–3873, https://doi.org/10.1021/pr4000448.
J. Nizioł et al.